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Figure 

1. Lithium diffusivity in 7-Mn02, /3~Mn02, and A-Mn02 at room temperature 2 
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Recently, A-Mn02 has been proposed as an alternative cathode to 
7//3-Mn02in Li/Mn02 primary batteries [1]. One suggested advantage of 
A-MnC>2 over y/ß-Mt\02 is its faster discharge rate at both room and low 
temperatures [1]. For the Mn02 cathode, its discharge rate I is a function 
of its lithium diffusivity D and particle size d: 

IaD/d . (1) 

Equation (1) shows that increasing lithium diffusivity and/or decreasing 
the particle size leads to an increase in the discharge rate. Equation (1) 
also shows that if two different materials of the same particle size have a 
difference in discharge rates for the same experimental conditions (i.e., 
electrolyte), this difference must result from the difference in their D 
values. In this note, my goal is to determine whether a switch from a 
y/ß-Mr\02 cathode to a A-Mn02 cathode causes an increase in the dis- 
charge rate in the Li/Mn02 system, as a result of a difference in the 
diffusivity D of the two materials. This comparison is made at room 
temperature only, since no low-temperature data for D in y/ ß-Mr\02 or 
A-Mn02 currently exist. 

Lithium diffusivity in /-Mn02 [2,3], ß-Mn02 [3], and A-Mn02 [4] at room 
temperature is plotted in figure 1. The figure includes, for A-Mn02, a data 
point at 3 x 10"n cm2/s (which was measured for LiMn204 [5]) and one at 
4 x 10~n cm2/s (measured for Li04MnO4 [6]). These two points are plotted 
for A-Mn02 because LiTMn204 has the same structure as A-Mn02 [7,8], and 
Guyomard and Tarascon [4] have shown that the diffusion coefficient of 
lithium in LiTMn204 is independent of lithium composition x, for x from 
0 to 1. Thus, the D values shown in figure 1 for LiMn204 (x = 1) and 
Li0 4Mn04 (x = 0.4) should correspond to lithium diffusivity in A-Mn02 

(x - 0). The figure also includes lithium diffusivity values for y-MnO? and 
/?-Mn02 produced from acid digestion of LiMn204 (filled symbols) [3]. 

Figure 1 suggests several important points. First, D in y-Mn02 is greater 
than D in /3-Mn02 (about a factor of 5 higher, if we consider only the open 
symbols). This is expected because the number of (2 x 1) channels de- 
creases as the Mn02 structure transforms from /to ß [8-10]. It has been 
suggested that lithium diffusivity is faster in the (2 x 1) channels than in 
(1 x 1) channels [10]. Hence, lithium diffusivity should decrease as the 
number of (2 x 1) channels decreases, which agrees with the data shown 
in figure 1. A similar trend is also observed in y-Mn02 and /3-Mn02 

produced from acid digestion of LiMn204 (filled symbols). 

A second observation from figure 1 is that two of the data points for 
A-Mn02, although from different research groups [5,6], are in excellent 
agreement with each other. However, there is a significant difference in D 
(about a factor of 25 to 30) between these data and the third data point 
(from Guyomard and Tarascon [4]). Reasons for this difference are not yet 
known. Since lithium diffusivity can be affected by impurities, it may be 



Figure 1. Lithium 
diffusivity in y-Mn02 

[2,3], ß-Mn02 [3], and 
A-Mn02 [4-6] at room 
temperature. 
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that material variations account for this difference [8]. However, the 
impurities and concentration for the three different materials were not 
given, so this suggestion cannot be confirmed. 

The data in figure 1 can be used to determine whether (at room tempera- 
ture) an increase in the discharge rate in Li/Mn02 batteries is likely to 
occur as a result of a switch from y/ß-Mnö2 to A-Mn02 cathodes. The 
currently used y/ß-Mn02 is a combination of y-Mn(D2 and ß-Mn02. 
Diffusivity D for y/ß-Mnö2 (open symbols) is about 1 x 10"10 cm2/s. 
(This value is based on a 50 vol.%y-Mn02 and 50 vol.% /3-Mn02 mixture.) 
I compare D for y/ß-Mnö2 (1 x 10-10 cm2/s) to two values of D for 
A-Mn02:4 x 10"10 and 1 x 10~"9 cm2/s. (I choose these two values 
because of the discrepancy in the data forA-Mn02, discussed earlier.) If 
D = 4 x 10"10 cm2/s for A-Mn02, the value for y/ß-MnÖ2 is about 2.5x 
higher: D = 1 x 10"10 cm2/s. Thus, according to equation (1), a decrease in 
the discharge current is predicted if A-Mn02 is used instead of y/ß-Mn02 

of equal particle size. If D = 1 x 10-9 cm2/s for A-Mn02, the value of D of 
y/ß-Mn02 is about lOx lower: 1 x 10~10 cm2/s. In this case, according to 
equation (1), changing from y/ß-Mnö2 to A-Mn02 of the same particle 
size will lead to a maximum increase in the discharge rate of about an 
order of magnitude. Unfortunately, without more experimental data for 
/L-Mn02, it is impossible to determine which is the correct D value for 
A-Mn02. In any case, the results reveal that the maximum increase in 
discharge rate at room temperature that can be achieved by switching 
from y/ß-Mn02 to A-Mn02 of the same particle size is about an order of 
magnitude. 

A third observation from figure 1 is that 7-Mn02 and /?-Mn02 produced 
from acid digestion (filled symbols) have a higher lithium diffusivity than 
7-Mn02 and /3-Mn02 produced by standard commercial methods (open 
symbols). Figure 1 shows that for both /-Mn02 and /3-Mn02, the D values 
for these materials when produced by acid digestion is higher than the D 
values when they are prepared by commercial methods. Among several 
possible explanations for this observation are differences in impurities 



and in structural water content. Since the impurities and their concentra- 
tions are not given, I cannot address this possibility. However, we know 
that the structural water content for the materials formed by acid diges- 
tion is about a factor of lOx lower than that for the materials prepared by 
commercial methods [3]. It is possible that the removal of structural water 
leads to more sites for lithium to occupy and move to and hence a higher 
D. More experimental work is required to confirm this suggestion. In any 
case, since y-Mn02 and /3-Mn02 produced by acid digestion have a higher 
D than commercially prepared y-Mn02and /3-Mn02, acid digestion may 
be a method of increasing the D in Mn02. One could speculate that 
A-Mn02 prepared from acid digestion of LiMn204 will also exhibit a 
higher D than A-Mn02 prepared by the more common electrochemical 
titration of LiMn204 (the method used to prepare the A-Mn02 shown in 
figure 1 [4]). At present, no low-temperature data for D in y//3-Mn02 or 
A-Mn02 exist, and hence no comparisons can be made. 

The results of the comparisons presented here suggest the following: 

(1) Switching from y/ß-Mn02 to A-Mn02 of equal particle size will lead to a 
maximum increase in the discharge rate at room temperature of about an 
order of magnitude. 

(2) More experimental data at both room and low temperatures are needed 
for D in y/ß-Mn02 and A-Mn02 before we can accurately predict whether 
an increase in discharge rate will occur as a result of switching from 
y/ß-Mn02 to A-Mn02 in the Li/Mn02 system. 

(3) When formed by acid digestion, y-Mn02and ß-Mn02 have a higher D 
and hence a faster discharge rate than when produced by commercial 
methods. This difference may be a result of the lower structural water 
content in materials formed by acid digestion. 
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